1
Rates of weighted statistical convergence for a generalization of positive linear operators, Mathematical Foundations of Computing, 6(3), 2023
Dr. Öğr. Üyesi Reyhan Canatan İlbey, Ogün Doğru |
2
Weighted Approximation Properties of Dunkl Analogue of Modified Szász-Mirakjan Operators, International Journal of Mathematical and Computational Methods, 2(0), 2017
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
3
Statistical Approximation Properties of a Generalization of Positive Linear Operators, EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 5(1), 2012
Dr. Öğr. Üyesi Reyhan Canatan İlbey, Ogün Doğru |
4
A Note on the Statistical Approximation Properties of the Modified Discrete Operators, Open Journal of Discrete Mathematics, 2(3), 2012
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
1
Direct and Inverse Theorems and the Rates of Convergence for the Generalized Positive Linear Operators, Approximation Theory and Special Functions ATSF 2024 Conference, 04.09.2024
Dr. Öğr. Üyesi Reyhan Canatan İlbey, Prof. Dr. Ogün Doğru |
2
On (p,q) Mittag-Leffler Operators, International Conference on Mathematics and Mathematics Education (ICMEE-2022), 22.09.2022
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
3
Approximation Properties of Mittag-Leffler Operators via GBS Operators, International Conference on Mathematics and Mathematics Education(ICMME-2018), 27.06.2018
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
4
Matematik Dersinin Önemi ve İçeriği Üzerine bir Araştırma: Kazan Meslek Yüksekokulu Örneği, Uluslararası Yükseköğretimde Mesleki Eğitim ve Öğretim Sempozyumu ISVET2017, 12.10.2017
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
5
Note on the Statistical Approximation Properties of a Modified Discrete Operators, International Conference on Applied Mathematics & Approximation Theorey (AMAT 2012, 17.05.2012
Dr. Öğr. Üyesi Reyhan Canatan İlbey |
6
Statistical Approximation Properties of a Generalization of Positive Linear Operators, International Conference on Applied Analysis and Algebra (ICAAA 2011), 29.06.2011
Dr. Öğr. Üyesi Reyhan Canatan İlbey, Prof. Dr. Ogün Doğru |
MATEMATİK |
MATEMATİK I |
MATEMATİK II |